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Abstract 

The present paper models the restricted three body problem, considering the generalization 

that the orbits of the primaries are taken to be elliptic and the two primaries are considered to be 

sources of radiation and all three participating bodies are considered as oblate spheroids. 

Hamiltonian of the problema is derived and then normalized using well-established normalization 

techniques. The range of values of µ and e for the linear stability of triangular equilibrium points 

have been found in presence of resonance. The stability of some of the cases of third order 

resonances has been simulated and explored graphically. The linear stability is observed in the 

resonance  cases 3λ2 = −1, 3λ2 = −2 and λ1 + 2λ2 = 0, where as the triangular points are found to 

be linearly unstable in the case λ1 − 2λ2 = 2. 
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1. Introduction 

The photo-gravitational elliptical restricted three-body problem deals with the motion of a 

passively gravitating infinitesimal particle, which in addition to the gravitational force, is affected 

by the repulsive force of the light pressure from one or two primary bodies. The primaries are 
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assumed to be moving in elliptical orbit. This problem is obtained as a generalization of the 

Circular Restricted Three Body Problem (CRTBP), where the eccentricity of the orbits of the 

primaries is assumed to be greater than zero. The CRTBP with the effect of the radiation 

pressure, when one or both the primaries of the system are the source of radiation, was discussed 

by Radzievskii [25, 26]. 

The rotation of celestial bodies produces an equatorial bulge, which results in the oblateness 

of the body. In classical problems the primaries are taken strictly as spheres but some planets and 

stars are sufficiently oblate to make departure from sphericity significant in the study of celestial 

systems. The influence of eccentricity of the orbit of the primaries with or without radiation 

pressure, oblateness and triaxiality of the primaries was studied by many authors 

[1,3,7,13,15,16,18,20,21,24,29,34,36] and others. Kumar and Ishwar [16] investigated the 

stability of the collinear liberation points when both the primaries are oblate and radiating 

whereas Singh and Aishetu [30] studied the stability of the triangular equilibrium points when 

both the primaries are oblate and radiating. Narayan and Singh [22, 23] studied the motion and 

stability of triangular equilibrium points when the primaries are radiating. 

The restricted three body problem when the oblateness of the infinitesimal is considered was 

also studied by some authors [4, 5]. Singh and Haruna [28] investigated the problem considering 

all the three participating bodies as oblate spheroid and reported the presence of five collinear 

equilibrium points. Also, they examined the stability of all the planar equilibrium points. [31] 

studied the dynamics of the planar ERTBP considering the oblateness of all three participating 

bodies and applied the model to binary pulsars. 

In the study of phenomenon of resonance in the dynamics of solar system, Roy and Ovenden 

[27] established that among the planetary and satellite systems, the occurrence of 

commensurability between the pairs of mean motions is more frequent than in a chance 

distribution.  The existence of a mean motion resonance between a pair of objects can lead to a 

repeating geometrical configuration of the orbits which guarantees stability even if the resonance 

is not exact, since there is still the possibility of stable liberal motion around an equilibrium point. 

Therefore, it is important to have an understanding of the dynamics of resonance. Since the late 

twentieth century until today, the enormous number of researches has enriched the study of 

Restricted Three-Body Problem (RTBP), by considering the influence of the various perturbing 

forces such as eccentricity of orbits, forces due to radiation pressure and oblateness. Markeev [19] 

studied the stability of equilibrium points in the presence of resonance greater than equal to 3 for 

the Hamiltonian system of an infinitesimal moving under the influence of two large gravitating 

bodies. Kumar and Choudhary [14] generalized the results given by Markeev by considering 
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doubly photogravitational elliptic restricted three body problem. Ferraz-Mello [6] derived a 

completely integrable dynamical system that represents the averaged motion of an asteroid 

moving in a first-order resonance with Jupiter. Hadjidemetriou [9] considered the resonant 

structure of the restricted three body problem for the Sun- Jupiter asteroid system in the plane is 

studied, both for a circular and an elliptic orbit of Jupiter and studied three typical resonance 

cases, the 2:1, 3:1 and 4:1 mean motion resonance of the asteroid with Jupiter. The resonance 

cases of libration points for restricted/elliptic restricted three body problem was analyzed by 

many authors: Henrard and Caranicolas [10–12], Hadjidemetriou [8], SubbaRao and Sharma [32], 

Thakur and Singh [33], Beauge´ etal. [2], Usha and Narayan[35] and many others. 

In this paper, we attempt to present a generalized result for the restricted three body problem 

of linear stability around triangular equilibrium point taking into consideration third and fourth 

order resonances. Our results are generalized in the sense that the eccentricity of the orbit is 

considered to be non-zero and oblateness of all three participating bodies are taken into 

consideration. Also the two primaries are assumed to be radiating bodies. 

The present paper is organized as follows: Section 1, presents a brief introduction. In Section 

2 the equations of motion are presented and triangular equilibrium points are obtained. Section 3 

focuses on Characteristic Roots and First order stability for the case when e = 0. In section 4, 

various canonical transformations are employed to obtain the normalized Hamiltonian for the 

system; in this section we follow [15]. In section 5, a study of resonance cases is presented. The 

discussions and conclusions are drawn in Section 6. 

 

2. Equation of Motion 

Assume that  𝑚1, 𝑚2 and m are the masses of the bigger, smaller and infinitesimal bodies 

respectively, where 𝑚1 and 𝑚2 have elliptical orbits and m is moving under their gravitational 

effect but the mass m being too small does not affect the motion of the primaries. 

Let 𝐴1,  𝐴2 and 𝐴3  denote the oblateness factor of the bigger primary, smaller primary and 

infinitesimal respectively. Also 𝑞1and 𝑞2 are assumed to be mass reduction factors of the two 

primaries. The frame of reference is so chosen that the distance between the primaries and 

gravitational constant are unity. Also the sum of the masses of the primaries is taken to be unity 

and mass ratio is given as 𝜇 =
𝑚2

𝑚1+𝑚2
. Thus, position offirst primary is (µ, 0, 0) and second 

primary is (µ − 1, 0, 0). Then the equation of motion in the pulsating rotating barycentric frame 

of reference is given as: 
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𝑥" − 2𝑦′ =
1

1+𝑒 cos𝑓
𝑈𝑥

∗;  

𝑦" + 2𝑥′ =
1

1+𝑒 cos𝑓
𝑈𝑦

∗;                                                                                                              (1) 

𝑧" =
1

1+𝑒 cos𝑓
𝑈𝑧

∗;                               

where,  

𝑈∗ =
𝑥2+𝑦2

2
+

1

𝑛2 [(1 − 𝜇) (
𝑞1

𝑟1
+

𝑞1𝐴1+𝐴3

2𝑟1
3 ) + 𝜇 (

𝑞2

𝑟2
+

𝑞2𝐴2+𝐴3

2𝑟2
3 )].                                                 (2)                            

 

Here, f denotes the true anomaly of one of the primaries and (‘) denotes differentiation with 

respect to f. Since the motion of the primaries are not affected by the infinitesimal body, the mean 

motion n [29] is given by  

 

𝑛2 =
1

𝑎3 (1 +
3

2
(𝑒2 + 𝐴1 + 𝐴2)).                                                                                              (3) 

 

The perturbed Hamiltonian of the dynamical system described by the equations of motion 

given by the system (1) is presented as follows: 

 

𝐻 = −
𝑥′2+𝑦′2

2
− (𝑦′𝑥 − 𝑥′𝑦) + 𝑃𝑥

2 + 𝑃𝑦
2 + 𝑃𝑥𝑦 − 𝑃𝑦𝑥 

1

1+𝑒 cos𝑓
[(1 − 𝜇)(

𝑟1
2

𝑟1
+

1

𝑛2𝑟1
(𝑞1 +

           
 𝑞1𝐴1+𝐴3

2𝑟1
2 )) + 𝜇(

𝑟2
2

2
+

1

𝑛2𝑟2
(𝑞2 +

𝑞2𝐴2+𝐴3

2𝑟2
2 )                                                                          (4) 

 

where, 𝑃𝑥  and 𝑃𝑦 denotes the generalized components of the momentum. The triangular 

equilibrium points in the case of planar three body problem is obtained by solving the equation, 

𝐻𝑥 = 0,  𝐻𝑦 = 𝐻𝑝𝑥 = 𝐻𝑝𝑦 = 0  for ′ = 𝑥" = 𝑦′ = 𝑦" = 0 = 𝑧  . The triangular points given as 

((𝑥∗, ±𝑦∗, ±𝑝𝑥
∗ , ±𝑝𝑦

∗) in linear trems of all the perturbing factors is given as: 

 

𝑥∗ =
1

2
− 𝜇 +

𝛽2

3
−

𝛽1

3
+

𝐴1

2
−

𝐴2

2
− 𝐴3 ,  

𝑦∗ =
√3

2
(1 −

2

3
𝑒2 −

5

3
𝛼 −

2

9
𝛽1 −

2

9
𝛽2 −

𝐴1

3
−

𝐴2

3
),                                          (5) 

𝑝𝑥
∗ =

√3

2
(1 −

2

3
𝑒2 −

5

3
𝛼 −

2

9
𝛽1 −

2

9
𝛽2 −

𝐴1

3
−

𝐴2

3
),          

𝑝𝑦
∗ =

1

2
− 𝜇 +

𝛽2

3
−

𝛽1

3
+

𝐴1

2
−

𝐴2

2
− 𝐴3.     

Here, 𝑎 = 1 − 𝛼.  
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3. Characteristic Roots and First Order Stability  

In the further analysis, the nature of motion near the triangular point 𝐿4 is studied, as 

𝐿5 𝑖𝑠 symmetrical to 𝐿4. Assuming (qi, pi), i = 1, 2 to be the variation in the coordinates of the 

triangular point 𝐿4, the variational equations may be written as: 

 
𝑑𝑞𝑖

𝑑𝑓
=

𝜕𝐻

𝜕𝑝𝑖
,
𝑑𝑝𝑖

𝑑𝑓
= −

𝜕𝐻

𝜕𝑞𝑖
; (𝑖 = 1,2),                         (6) 

 

where, 

 

𝐻 = 𝐻0 + 𝐻1 + 𝐻2 + ⋯,                                                             (7) 

𝐻0 = 𝑐𝑜𝑛𝑡, 𝐻1 = 0,                                                                        (8) 

𝐻2 = 𝐻2
(0)

+ 𝐻2
(1)                                                                              (9) 

 

For 𝐻2, the two parts are given as follows: 

 

𝐻2
(0)

= 𝑝1𝑞2 − 𝑝2𝑞1 +
𝑝1

2+𝑝2
2

2
+ [(

1

8
+ 𝐴(0))𝑞1

2 − (𝐾(0) − 𝐵(0))𝑞1𝑞2 − (
5

8
+ 𝐶(0))𝑞2

2]        (10) 

and 

 𝐻2
(1)

=
𝑒 cos𝑓

1+𝑒 cos𝑓
[(

3

8
− 𝐴)𝑞1

2 + (𝐾 − 𝐵) 𝑞1𝑞2 + (
9

8
+ 𝐶) 𝑞2

2]                                               (11) 

 

Here, 𝐻2
(0) denotes the value of the second order Hamiltonian when eccentricity e is assumed 

to be 0 and the values of the coefficients are as follows: 

 

𝐴 =
7𝑒2

8
(1 − 2𝜇) +

𝛽1

4
(1 − 3𝜇) −

𝛽2

4
(2 − 3𝜇) −

3𝐴1

4
(1 −

7

4
𝜇) +

3𝐴2

4
(1 −

7

4
𝜇) +

𝛼

32
− 140 +

         
 9𝐴3

8
(1 −

7

3
𝜇),  

𝐵 = √3[−
11

4
𝑒2(1 −

20

11
𝜇) +

𝛽1

6
(1 + 𝜇) −

𝛽2

6
(2 − 𝜇) −

5𝛼

3
(1 − 2𝜇) −

𝐴1

2
(7 −

59

4
𝜇) − 𝐴2(2 −

           
29

8
𝜇) −

9𝐴3

4
(1 −

5

3
𝜇) −

29𝛼

16
(1 −

38

29
𝜇)]  

𝐾 =
3√3

4
(1 − 2𝜇)                                                                                                               (12) 

𝐶 =
𝑒2

8
(23 − 22𝜇) +

𝛽1

4
(1 − 3𝜇) −

𝛽2

4
(2 − 3𝜇) +

3𝐴1

4
(3 +

11

4
𝜇) +

3𝐴2

4
(3 −

11

4
𝜇) −

𝛼

32
(95 −

          220𝜇) −
33𝐴3

8
(1 − 𝜇)  
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The values of coefficients A(0), B(0), C(0) and K(0) are obtained from A, B, C and K by 

substituting e=0.The canonical transformation for the second order Hamiltonian H2 isgivenby 

 
 𝑑𝑞𝑖

𝑑𝑡
=

𝜕𝐻2

𝜕𝑝𝑖
,
𝑑𝑝𝑖

𝑑𝑡
= −

𝜕𝐻2

𝜕𝑞𝑖
; (𝑖 = 1,2)                                                                                           (13)                              

 

where, H2 is given by equation (9). Thus the canonical equation of motion is obtained as: 

 

�̈�1 − 2�̇�2 = 𝐴∗𝑞1 + 𝐵∗𝑞2 ;  

�̈�2 + 2�̇�1 = 𝐵∗𝑞1 + 𝐶∗𝑞2 ;                                                                                                     (14) 

 

where,  

𝐴∗ =
3

4
− 2𝐴, 

𝐵∗ = 𝐾 − 𝐵, 

𝐶∗ =
9

4
+ 2𝐶. 

 

Here, ( ‘ )denotes differentiation w.r.t time t. Assuming that the solution for the system of 

equations given by(14) are q1=Leλt and q2=Meλt, the characteristic equation is obtained as: 

 

𝜆4 + (4 − 𝐴∗ − 𝐶∗)𝜆2 + 𝐴∗𝐶∗ − 𝐵∗2 = 0                                         (15) 

 

The equilibrium position is stable, if the roots of equation (15) are purely imaginary, thus 

solving the obtained condition for the case when both the frequencies are equal, we get the value 

of µ admisible for stable equilibrium point denoted by µ(e) as: 

 

𝜇(𝑒) =
1

2
(1 − √

23

27
) +

85𝛼

9√69
+

𝑒2

9√69
(22 − (

703√69

4
−

10775

23
) 𝛼) −

1

9
(1 − √

23

3
+

1

828
(83283 −

 7748√69)𝛼)𝐴1 −
1

9
(4 +

11

√69
− (

665

12
−

67

6√69
) 𝛼)𝐴2 +

1

3
(
5

6
+

4

√69
+ (

679 3

4√69
− 

3605

36
) 𝛼)𝐴3 +

1

9
(

5

√69
−

35

276
(529 + 4√69)𝛼) 𝛽1 −

1

27
(

2

√69
+ (

51

2
−

3977

12√69
) 𝛼)𝛽2                (16) 

                                                                                                                                     

And the value of µ admisible for stable equilibrium point for the case when e=0, denoted by 

µ(0)  is given as 
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𝜇(0) = 0.0385209 − 0.419121𝛼 − 0.795884𝐴1 − 0.407974𝐴2 − 0.682187𝐴3 −

                      0.00891747𝛽1        − 0.00891747𝛽2                                                           (17) 

 

4. Normalization of the Hamiltonian function 𝑯𝟐 

In this section we shall study the stability of the triangular points in elliptical restricted three 

body problema adopting the method given by Markeev [19]. For subsequent studies, we first 

normalize the Hamiltonian upto second order given by (9). For normalization, we consider the 

canonical transformation 

 

(𝑞1, 𝑞2, 𝑝1, 𝑝2) = (𝑞′
1
, 𝑞′

2
, 𝑝′

1
, 𝑝′

2
),                                             (18) 

where , 

𝑁 =

[
 
 
 
𝑎1 𝑎1𝑐1  

𝑎2 𝑎2𝑐2   
  −𝑎1𝑐1 𝑎1(1 − 𝜔1

2𝑏1)

−𝑎2𝑐2  𝑎2(1 − 𝜔2
2𝑏2)

0 𝑎1𝑏1       
0 −𝑎2𝑏2    

𝑎1(1 − 𝑏1 ) 𝑎1𝑐1

𝑎2(1 − 𝑏2 ) −𝑎2𝑐2 ]
 
 
 

, 

𝑎𝑖 =
1

2
(

2𝑙𝑖

𝜔𝑖
2−

1

2

)1/2,                                                                                   (19) 

𝑏𝑖 =
1

𝑙𝑖
,                                     

𝑐𝑖 =
−(𝐾−𝐵)

𝑙𝑖
,  

and 

𝑙𝑖 =
9

4
+ 2𝑐 + 𝜔𝑖

2.   

 

Assuming the frequencies 𝜔1  and 𝜔2 , are given by the relation 𝜔1
2 = −{𝜆1,2

(0)
}2  and 𝜔2

2 =

−{𝜆3,4
(0)

}2  and the values are obtained as: 

 

(𝜔1,2)
2 =

1

2
[1 ± {1 − 27𝜇(1 − 𝜇)(1 +

2

9
𝛽1 +

2

9
𝛽2 +

94

9
𝛼 +

119

6
𝐴1 +

61

6
𝐴2 + 17𝐴3)}

1/2 ×

                            (1 −
 13

4
𝛼 − 6𝐴1 − 3𝐴2 − 6𝐴3)].                                                               (20) 

                                                                                                                 

The transformation (18) reduces the Hamiltonian (9) to the form 

𝐻′
2 =

1

2
(𝑝′

1
2
+ 𝑤1

2𝑞′
1
2
) −

1

2
(𝑝′

2
2
+ 𝑤2

2𝑞′
2
2
) 

+
𝑒 cos𝑓

1+𝑒 cos𝑓
∑ 𝑎′ʋ1+ʋ1+𝛾1+𝛾2ʋ1+ʋ1+𝛾1+𝛾2=2 𝑞1

′ʋ1𝑞2
′ʋ2𝑝1

′𝛾1𝑝2
′𝛾2;           (21) 
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where, 

𝑎′2000 = ((
3

8
− 𝐴) + (𝐾 − 𝐵)𝑐1  + ( 

9

8
+ C)𝑐1 

2)𝑎1,
2   

𝑎′0200 = ((
3

8
− 𝐴) + (𝐾 − 𝐵)𝑐2  + ( 

9

8
+ C) 𝑐2 

2) 𝑎2 
2 ,  

𝑎′0020 = ( 
9

8
+ C) 𝑎1 

2 𝑏1 
2 ,  

𝑎′0002 = ( 
9

8
+ C) 𝑎2 

2 𝑏2 
2 ,   

𝑎′1100 = ((
3

4
− 2𝐴) + (𝐾 − 𝐵)(𝑐1 + 𝑐2) + ( 

9

4
+ 2C) 𝑐1𝑐2 ) 𝑎1𝑎2,           (22) 

𝑎′1010 = ((𝐾 − 𝐵) + ( 
9

8
+ 2C) 𝑐1) 𝑎1 

2 𝑏1,  

𝑎′1001 = −((𝐾 − 𝐵) + ( 
9

8
+ 2C) 𝑐1) 𝑎1𝑎2𝑏2,  

𝑎′1010 = −((𝐾 − 𝐵) + ( 
9

8
+ 2C) 𝑐2) 𝑎2 

2 𝑏2,  

𝑎′0110 = ((𝐾 − 𝐵)  − ( 
9

8
+ 2C)𝑐1)𝑎1𝑎2𝑏1,  

𝑎′0011 = −( 
9

8
+ 2C)𝑎1𝑎2𝑏1𝑏2.  

 

Next we apply the transformation  

 

(𝑞′1, 𝑞′2, 𝑝′1, 𝑝′2) = (
1

√𝜔1
�̃�1,

1

√𝜔2
�̃�2, √𝜔1  �̃�1, √𝜔2  𝑝2)                                    (23)                                   

 

Consequently, we obtain the Hamiltonian in the form 

 

�̃�2 =
1

2
𝑤1(𝑝1

2 + �̃�1
2) −

1

2
𝑤2(�̃�2

2 + �̃�2
2) 

+
𝑒 cos𝑓

1+cos𝑓
∑ �̌�ʋ1+ʋ1+𝛾1+𝛾2ʋ1+ʋ1+𝛾1+𝛾2=2 �̃�1

ʋ1�̃�2
ʋ2  �̃�1

𝛾1�̃�2
𝛾2;                        (24)  

�̃�2000 =
1

𝑤1
𝑎′2000,�̃�0200 =

1

𝑤2
𝑎′0200,�̃�0200 = 𝑤1𝑎′0020,  

�̃�0002 = 𝑤2𝑎′0002,�̃�1100 =
1

√𝑤1𝑤2
𝑎′1100,�̃�1001 = √

𝑤2

𝑤1
𝑎′1001,�̃�1010 = 𝑎′1010,                  (25) 

�̃�0110 = √
𝑤1

𝑤2
𝑎′0110,�̃�0101 = 𝑎′0101,�̃�0011 = √𝑤1𝑤2𝑎′0011 .   

 

The Hamiltonian given by (24) is reduced to the form  𝐻2
′′=2i𝐻2  by using the complex 

conjugate variable given by 
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𝑞"𝑗 = 𝑝𝑗 + 𝑖�̃�𝑗   , 𝑝"𝑗 = 𝑝𝑗 − 𝑖�̃�𝑗,   (𝑗 = 1,2).                                (26) 

 

Thus Hamiltonian 𝐻2
′′ is given as: 

 

𝐻2 = 𝑖𝑤1𝑝"1𝑞"1 − 𝑖𝑤2𝑝"2𝑞"2                       (27)            

+2𝑖
𝑒 cos 𝑓

1 + cos 𝑓
∑ 𝑎"ʋ1+ʋ1+𝛾1+𝛾2

ʋ1+ʋ1+𝛾1+𝛾2=2

𝑞"1
ʋ1𝑞"2

ʋ2  𝑝"1
𝛾1𝑝"2

𝛾2 

where, 

𝑎2000
" =

1

4
(−�̃�2000 + �̃�0020 − 𝑖�̃�1010),  

𝑎0200
" =

1

4
(−�̃�0200 + �̃�0002 − 𝑖�̃�0101),  

      𝑎1100
" =

1

4
(−�̃�1100 + �̃�0011 − 𝑖�̃�1001 − 𝑖�̃�0110),                                                    (28) 

𝑎1001
" =

1

4
(�̃�1100 + �̃�0011 + 𝑖�̃�1001 − 𝑖�̃�0110),  

𝑎1010
" =

1

2
(�̃�2000 + �̃�0020 ),  

𝑎0101
" =

1

2
(�̃�0200 + �̃�0002 ),  

 

And other coefficient can be obtained from these coefficients as for the Hamiltonian  

𝐻2
" , 𝑎"ʋ1ʋ1𝛾1𝛾2

= �̅�𝛾1𝛾2ʋ1ʋ1
" , where the bar sign denotes the complex conjúgate quantity. To 

reduce the Hamiltonian given by (27) to the normal form in complex conjúgate variables, the 

following transformation is applied  

 

(𝑞𝑗
", 𝑝𝑗

") → (𝑞𝑗
∗∗, 𝑝𝑗

∗∗),              (29) 

 

given by the generating function: 

 

𝑞1
"𝑝1

∗∗ + 𝑝2
"𝑞2

∗∗ + 𝑆(𝑞1
" . 𝑞2

" . 𝑞1
" . 𝑝1

∗∗𝑝2
∗∗, 𝑓),                                                  (30) 

 

where   

 

𝑆 = ∑ 𝑆ʋ1ʋ1𝛾1𝛾2ʋ1+ʋ1+𝛾1+𝛾2=2 𝑞"1
ʋ1𝑞"2

ʋ2  𝑝1
∗∗𝛾1𝑝2

∗∗𝛾2 .                                              (31) 
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And 𝑆ʋ1ʋ1𝛾1𝛾2
 are to be chosen 2𝜋- periodic function of 𝑓 . So that the Hamiltonian is in the 

form  

: 

𝐻2
∗(𝑞𝑗

∗∗, 𝑝𝑗
∗∗) = 𝑖𝜆1𝑞1

∗∗𝑝1
∗∗ + 𝑖𝜆2𝑞2

∗∗𝑝2
∗∗.                                                       (32) 

 

Assuming the relation between the variables 𝑞𝑗
" , 𝑝𝑗

" and 𝑞𝑗
∗∗, 𝑝𝑗

∗∗ as: 

𝑞𝑗
∗∗ = 𝑞𝑗

" +
𝜕𝑆

𝜕𝑝𝑗
∗∗,  

𝑝𝑗
" = 𝑝𝑗

∗∗ +
𝜕𝑆

𝜕𝑞𝑗
∗∗                               (33) 

 

We get the identity 𝐻2
∗∗(𝑞𝑗

" +
𝜕𝑆

𝜕𝑝𝑗
∗∗ . 𝑝𝑗

∗∗, 𝑓) − 𝐻2
"(𝑞𝑗

", 𝑝𝑗
∗∗ +

𝜕𝑆

𝜕𝑞𝑗
" . 𝑓) =

𝜕𝑆

𝜕𝑓
 . 

On expanding using the Taylor's theorem upto second order derivative terms, we get: 

 

𝐻2
∗∗(𝑞𝑗

"𝑝𝑗
∗∗, 𝑓) + ∑

𝜕𝑆

𝜕𝑝𝑗
∗∗

2

𝑗=1

𝜕𝐻2
∗∗

𝜕𝑞𝑗
"

+
1

2
[(

𝜕𝑆

𝜕𝑝1
∗∗)

2
𝜕2𝐻2

∗∗

𝜕𝑞1
"2 + 2

𝜕𝑆

𝜕𝑝1
∗∗

𝜕𝑆

𝜕𝑝2
∗∗

𝜕2𝐻2
∗∗

𝜕𝑞1
"𝜕𝑞2

"
+ (

𝜕𝑆

𝜕𝑝8
∗∗)

2
𝜕2𝐻2

∗∗

𝜕𝑞2
" 2 ]  

−𝐻2
"((𝑞𝑗

"𝑝𝑗
∗∗, 𝑓) − ∑

𝜕𝑆

𝜕𝑝𝑗
"

2

𝑗=1

𝜕𝐻2
"

𝜕𝑝𝑗
∗∗ −

1

2
[(

𝜕𝑆

𝜕𝑞1
"
)2

𝜕2𝐻2
"

𝜕𝑝1
∗∗2 + 2

𝜕𝑆

𝜕𝑞1
"

𝜕𝑆

𝜕𝑞2
"

𝜕2𝐻2
∗∗

𝜕𝑝1
∗∗𝜕𝑝2

∗∗ + (
𝜕𝑆

𝜕𝑞2
"
)2

𝜕2𝐻2
∗∗

𝜕𝑝2
∗∗2 ]  

= ∑
𝑑𝑆ʋ1ʋ1𝛾1𝛾2

𝑑𝑓
𝑞"1

ʋ1𝑞"2
ʋ2  𝑝1

"𝛾1𝑝2
"𝛾2

ʋ1+ʋ1+𝛾1+𝛾2=2                                                         (34) 

 

Using the equations (27) and (32), restricting only upto the second order terms in e, the 

above equation (34) is simplified in the form: 

 

𝑖𝜆1𝑞1
"𝑝1

∗∗ + 𝑖𝜆2𝑞2
"𝑝2

∗∗ + 𝑖 ∑(𝛾1 𝜆1 + 𝛾2𝜆2)(𝑒𝑠
(1) + 𝑒2𝑠(2)) − 𝑖𝑤1𝑞1

"𝑝1
∗∗ + 𝑖𝑤2𝑞2

"𝑝2
∗∗ 

          −2𝑖[𝑒 cos 𝑓 −
𝑒2

2
(1 + cos 2𝑓)] 𝑎ʋ1ʋ1𝛾1𝛾2

" 𝑞"1
ʋ1𝑞"2

ʋ2  𝑝1
∗∗𝛾1𝑝2

∗∗𝛾2              

                     −𝑖 ∑(ʋ1𝑤1 − ʋ2𝑤2)(𝑒𝑠
(1) + 𝑒2𝑠(2)) = 𝑒

𝑑𝑠(1)

𝑑𝑓
+ 𝑒2 𝑑𝑠(2)

𝑑𝑓
                (35) 

where , 

𝑆ʋ1ʋ1𝛾1𝛾2
= 𝑒 ∑𝑠ʋ1ʋ2𝛾1𝛾2

(1)
+ 𝑒2 ∑𝑠ʋ1ʋ2𝛾1𝛾2

(1)  
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Assuming 𝜆𝑗 = 𝜆𝑗
(0)

+ 𝑒𝜆𝑗
(1)

+ 𝑒2𝜆𝑗
(2)

+ ⋯ , (𝑗 = 1,2) and equating the coefficients of the 

equal powers in e and integrating w.r.t f, we get 

 

𝜆1
(0)

= 𝜔1, 𝜆2
(0)

= 𝜔2,                                  (36) 

𝑠1010
(1)

= 𝑖𝜆1
(1)

𝑓 − 2𝑖𝑎1010
" sin 𝑓 , 

𝑠0101
(1)

= 𝑖𝜆2
(1)

𝑓 − 2𝑖𝑎0101
" sin 𝑓 , 

𝑠ʋ1ʋ1𝛾1𝛾2

(1)
=

2𝑖𝑎ʋ1ʋ1𝛾1𝛾2
" [sin𝑓+𝑖{(ʋ1−𝛾1)𝑤1−(ʋ2−𝛾2)𝑤2} cos𝑓]

{(ʋ1−𝛾1)𝑤1−(ʋ2−𝛾2)𝑤2}2−1
                                              (37) 

 

By virtue of periodicity of  𝑠1010
(1)  and 𝑠0101

(1)  it follows that 𝜆1
(1)

= 𝜆2
(1)

= 0. Using relations 

given by (37), the value of S as a complex –valued function in the first order terms of e is 

obtained.  

Again the Hamiltonian given by equation (27) is transformed to the normal form given by : 

 

𝐻2
∗ =

1

2
𝜆1(𝑞1

∗2 + 𝑝1
∗2) +

1

2
𝜆2(𝑞2

∗2 + 𝑝2
∗2),                                                         (38) 

 

where the transformation is given by means of generating function  

�̃�1𝑝1
∗ + �̃�2𝑝2

∗ + 𝐾(�̃�𝑗, 𝑝𝑗
∗,f), where K is restricted to the order of e alone and the relation 

between the variables is given as :  

 

𝑞𝑗
∗ = �̃�𝑗 +

𝜕𝐾

𝜕𝑝𝑗
∗, 𝑝𝑗 = 𝑝𝑗

∗ +
𝜕𝐾

𝜕𝑞𝑗
∗                                                                   (39) 

 

Taking into account the relation between the complex canonical variables with the real ones 

given by equation (26) and as follows : 

 

𝑞𝑗
∗∗ = 𝑝𝑗

∗ + 𝑖𝑞𝑗
∗,    𝑝𝑗

∗∗ = 𝑝𝑗
∗ − 𝑖𝑞𝑗

∗(𝑗 = 1,2),                                          (40) 

 

From relation (33),where S is taken to the order of e and given as 𝑠(1)(𝑝𝑗
∗ + 𝑞𝑗

∗, 𝑝𝑗
∗ − 𝑖𝑞𝑗

∗, 𝑓) 

is denoted by W(𝑝𝑗
∗, 𝑞𝑗

∗, 𝑓), we obtain: 

 

�̃�𝑗 = 𝑞𝑗
∗ −

1

2𝑖

𝜕𝑊

𝜕𝑝𝑗
∗ , 𝑝𝑗 = 𝑝𝑗

∗ +
1

2𝑖

𝜕𝐾

𝜕𝑞𝑗
∗                                                                       (41) 
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Comparing relation (39) and (41),we obtain: 

 

𝐾 =
1

2
𝑊                                                                       (42) 

 

Hence the function 𝐾 = ∑𝑘ʋ1ʋ2𝛾1𝛾2
𝑞1

∗ʋ1𝑞2
∗ʋ2  𝑝1

∗𝛾1𝑝2
∗𝛾2   is revaluated and using the formula 

(41), (42) and (26), we get the coefficients 𝑘ʋ1ʋ2𝛾1𝛾2
 as follows: 

 

𝑘2000 =
1

2𝑖
(−𝑠2000

(1)
− 𝑠0020

(1)
+ 𝑠1010

(1)
), 𝑘0200 =

1

2𝑖
(−𝑠0200

(1)
− 𝑠0002

(1)
+ 𝑠0101

(1)
),  

𝑘0020 =
1

2𝑖
(𝑠2000

(1)
+ 𝑠0020

(1)
+ 𝑠1010

(1)
), 𝑘0002 =

1

2𝑖
(𝑠0200

(1)
+ 𝑠0002

(1)
+ 𝑠0101

(1)
),  

𝑘1100 =
1

2𝑖
(−𝑠1100

(1)
+ 𝑠1001

(1)
+ 𝑠0110

(1)
+ 𝑠0011

(1)
), 𝑘1010 = 𝑠2000

(1)
− 𝑠0020

(1)                           (43) 

𝑘1001 =
1

2
(𝑠1100

(1)
+ 𝑠1001

(1)
− 𝑠0110

(1)
− 𝑠0011

(1)
), 𝑘0110 =

1

2
(𝑠1100

(1)
− 𝑠1001

(1)
+ 𝑠0110

(1)
− 𝑠0011

(1)
),  

𝑘0101 = 𝑠0200
(1)

− 𝑠0002
(1)

, 𝑘0011 =
1

2𝑖
(𝑠1100

(1)
+ 𝑠0110

(1)
+ 𝑠1001

(1)
+ 𝑠0011

(1)
),                    

 

Thus the normal form of the Hamiltonian 𝐻2 isobtained as givenbyequation (38) correct to 

first order of eccentricity. 

 

5. Study of Resonance Cases 

In this section, we shall employ the KAM-theorem for stability and examine the existence of 

resonances of the third and fourth order. In order to study the resonances for different values of e, 

we shall need the value of λ1 and λ2 to O(e2), sinceλ1
(1) = λ2

(1) = 0. The quantities λ1
(2) andλ2

(2) are 

found by the periodicity conditions of the functions 𝑠1010
(2)  and 𝑠0101

(2) . Equating the coefficients of 

e2 in the expansion of equation (34) and integrating w.r.t f, we shall get: 

 

𝑠1010
(2)

= −2𝑖 sin 𝑓(4𝑎0020
" 𝑠2000

(1)
+ 𝑎1010

" 𝑠1010
(1)

+ 𝑎0011
" 𝑠0011

(1)
) +

𝑖

2
𝑎1010

" sin 2𝑓 + 𝑖(𝑎1010
" + 𝜆1

(2)
)𝑓 

                                                                                                                                           (44) 

𝑠0101
(2)

=      −2𝑖 sin 𝑓(4 𝑎0002
" 𝑠0200

(1)
+ 𝑎0011

" 𝑠1100
(1)

+ 𝑎0110
" 𝑠1001

(1)
+ 𝑎0101

" 𝑠0101
(1)

) +

                               
𝑖

 2
𝑎0101

" sin 2𝑓 + 𝑖(𝑎0101
" + 𝜆2

(2)
)𝑓  

 

Using the periodicity of𝑠1010
(2)  and 𝑠0101

(2) and the equations (19), (22), (25), and (28), the values 

of𝜆1
(2)and𝜆2

(2)are obtained with the help of software Mathematica 10. Assuming the value of 𝜇 
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giving the resonance𝑘1𝜆1 + 𝑘2𝜆2 = 𝑁be given as 𝜇 = 𝜇(0) + 𝑒2𝜇(2) ; taken correct to O(e2),  

where 𝜇(0) denotes the value of μ when the eccentricity is assumed to be zero and 𝜇(2); denotes 

the value of μ when the eccentricity e≠0: Also the value  𝜆1 and 𝜆1are taken as function of μ. 

Then employing the Taylor's theorem expansion of 𝜆1 and 𝜆2 given as: 

 

𝜆1 = 𝜆1
(0)

+ 𝑒2𝜆1
(2) + 𝑒2𝜇(2)(

𝑑𝜆1

𝑑𝜇
)0  

and  

 𝜆2 = 𝜆2
(0)

+ 𝑒2𝜆2
(2) + 𝑒2𝜇(2)(

𝑑𝜆2

𝑑𝜇
)0                                                                     (45)           

 

where 𝜆1
(0) and 𝜆2

(0) denoting teh value of 𝜆 corresponding to 𝜇 = 𝜇(0) can be obtained from 

(17). Substituting the value of  𝜆1 and 𝜆2 from equation (45) in 𝑘1𝜆1 + 𝑘2𝜆2 = 𝑁and equating the 

coefficient of 𝑒2 to zero, we get: 

 

𝜇(2) = (
𝑘1𝜆1

(2)+𝑘2𝜆2
(2)

𝑘2
𝑑𝑤2
𝑑𝜇

−𝑘1
𝑑𝑤1
𝑑𝜇

)𝜇=𝜇(0)                                                                    (46) 

 
Fig.1. 𝜇 versus e for 3λ2 =−1 

 

Taking our clue from Kumar and Choudhry [15], we have studied four cases of third order 

resonance graphically. Figures 1-4 show the value of µand  µ(e)  as functions of e, taking the 
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values A1=0.001, A2=0.001, α=0.0005 and A3  is varied as A3=0, A3= 0.01, A3=0.05 for the cases 

of third order resonance:3λ2 =−1, 3λ2 =−2, λ1+2λ2 =0 and λ1 −2λ2 =2. 

 

6. Discussion and Conclusion 

The resonance cases and the linear stability of the elliptic restricted three body problema 

where both the primaries are luminous and all the three participating bodies are oblate has been 

analyzed. The Hamiltonian for the system is defined and then normalized using the Markeev’s 

method [19]. 

Four particular cases of third order resonance are studied numerically and represented by 

figures 1-4. In figure 1, µ and µ(e)  are plotted w.r.t the eccentricity of the orbit of the primaries for 

the resonance case 3λ2=−1. It is observed that the value of µ is always less than the value of µ(e) 

which is the required condition for stability, however for e > 0.3 the value of µ becomes negative 

when β1> 0, β2< 0; β1 < 0, β2> 0 and β1> 0, β2> 0. For β1< 0, β2< 0 the value of µ becomes 

negative for e> 0.35. Similar pattern is observed in the case of 3λ2 = −2 and λ1 + 2λ2 = 0 as shown  

in Figure 2 and 3. But in the case λ1 − 2λ2 = 2, the value of µ is not obtained in the real µ − e 

plane. Thus, we conclude that the linear stability is observed in the resonance  cases 3λ2 = −1,  

3λ2 = −2 and λ1 + 2λ2 = 0, where as the triangular points are found to be linearly unstable in the 

case λ1 − 2λ2 = 2. 

 

 
Fig.2. 𝜇 versus e for 3λ2 =−2 
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Fig. 3. 𝜇 versus e for λ1+2λ2 =0 

 
Fig. 4. 𝜇 versus e for λ1 −2λ2 =2 
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